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SUMMARY 

The one-dimensional diffusion equation for a region with one fixed boundary and one unknown moving 
boundary is transformed to a non-linear equation on a fixed region by using the moving boundary position as 
the time variable. The boundary velocity becomes a second dependent variable, with dependence only on the 
new time variable. An implicit finite difference scheme, marching in time, is applied to a problem with known 
analytic solution to demonstrate the computing speed and accuracy of this approach, and also to a problem 
solved previously by variable time step methods. This transformat!on reduces any parabolic or elliptic system 
of equations on a domain with moving boundary, or with unknown free surface in two space variables, to a 
non-linear freed domain system which has advantages for computation. 

1. Introduction 

A variety of diffusion problems with moving boundaries, and associated analytic and numerical 
methods, are described in the Oxford Conference Proceedings edited by Ockendon and 

Hodgkins [1], subsequently designated OH. Analytic solutions are possible for very few pro- 

blems, and the general approach is necessarily numerical. Tayler [2] describes the general multi- 

phase Stefan problem, with several unknown moving interfaces, and typical interface conditions. 
A two-phase problem involves one moving interface, and a classical simplification treats only 

one phase with one fixed and one moving boundary. Crank [3] discusses finite difference 
methods for the classical one-dimensional diffusion problem, which include variable space steps 
and variable time steps, and a change of space variable to fix the moving boundary. The latter 

transformation was used in an application by Ferris [4], but leads to a non-linear equation in- 

volving both the moving boundary position and velocity explicitly, and in turn a non-trivial 
iteration at each time step to update the boundary position. It was incorporated also in a dif- 
ferent treatment by Baumeister and Hoffman [5]. 

The question of 'best method' is discussed by Fox [6], who reviews the above methods, the 
interchange of dependent and independent variables, integral and integro-differential equation 

methods and variational methods. He notes that some methods are special to the problem (or 
class of problems) treated, and not easily extended, in particular, to more than one space 

variable. However, the classical one-dimensional diffusion problem reveals the difficulties, and 
inadequacies, in dealing with a moving boundary, and provides a useful first test for the various 
methods. The recent review by Furzeland [7] compares the merits of  four different methods, 
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including the above fixed domain transformation, by applying various subsets to three one-phase 
and one two-phase Stefan problems. There is not a best method for all the problems. A more 
restricted comparison of different variable time step methods has been presented by Gupta and 
Kumar [8], essentially different iteration procedures to determine the required time step, who 
show that their version remains stable for longer times and gives good agreement with a solution 
obtained by an approximate integral method. 

I will now present an alternative fixed domain transformation by replacing time by boundary 
position, appropriate to one moving boundary in one space dimension. There is no direct ex- 
tension to more than one space variable, or to more than one moving boundary, but within 
these limitations it is not restricted to linear or single equations. The original formulation was 
for a steady state elliptic free surface problem in two space variables but is currently an ap- 
proach to the coupled thermomechanical equations for a steady state ice.sheet. Here the lead 
order balances in a perturbation method based on the small surface slope, developed by Morland 
and Johnson [9, 1O] and Johnson [11] for plane and axisymmetric flows under isothermal 
conditions, generate a parabolic system. The horizontal coordinate is equivalent to time in the 
diffusion problem, and the surface slope is equivalent to the boundary velocity. 

This method introduces the boundary velocity, expressed as a function of boundary position, 
as an additional dependent variable, and the transformed equation is necessarily non-linear. The 
extra boundary condition, now on a fixed boundary, determines the boundary velocity, and it 
is demonstrated by comparison with an exact solution how a simple implicit finite difference 
scheme achieves accurate results. In the examples presented at most one iteration to update the 
extrapolated boundary velocity is required, and only during an initial time period. There is no 
record of the iteration count for the previous space variable transformation method, but there 
both boundary position and boundary velocity must be extrapolated and updated. Also the 
number of iterations required for the variable time step method Gupta and Kumar [8], to 
achieve prescribed accuracy is not recorded, but ~eir  solution is much closer to that given by 
the present method, over their limited time period, than to that given by the approximate in- 
tegral method used for comparison. 

An essential feature of the transformation is the monotonicity of boundary position with 
respect to time (or surface slope in a two space dimension problem) over the interval considered. 
This is common in free surface problems and one-phase diffusion, but Furzeland [7] warns that 
boundary motion can change direction frequently in two.phase problems, when the solution 
must be computed sequentially in the corresponding time intervals. Change-over conditions at 
zero velocity may give rise to numerical difficulties. 

2. Moving boundary problems 

The main features of a one<limensional, one.phase, moving boundary diffusion problem are 
incorporated in the following equations for a variable u (x, t) and unknown boundary x = s(t): 

au a2u 
O < x < s ( t ) ,  t > O ,  (1) 

at ax 2 ' 
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~u 
~-x = - - f ( t ) ,  x = 0, t > 0, (2) 

Ou ds 
u = p ( x ) ,  Ox - d t '  x = s( t ) ,  t > O, (3) 

u = g ( x ) ,  t = O, 0 < x < s ( 0 ) .  (4) 

Gupta and Kumar [8] treat the same problem as Douglas and Gallic [12], namely, 

f ( t )  = 1, p ( x )  = 0, s(0) = 0, (5) 

where the initial distribution g ( x )  is absent. The position dependent condition (3)1 could be 
replaced by a time dependent condition if(t)  with little change in the subsequent analysis, and 
an alternative to condition (3)2, independent of boundary velocity, 

au 
-~x = q ( x )  or ( ( t ) ,  x = s ( t ) ,  (6) 

will also be analysed. 

t 
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Figure 1. The Gupta-Kumar problem. 
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Figure 2. Boundary conditions with an exact solution. 

Figure 1 illustrates the boundary conditions (5) of the GK problem, with the moving 

boundary and fixed boundary value u(0, t) calculated by the present method. In this example 
the boundary velocity ~ decreases smoothly with t, from unity to 0.2135 at t = 31.2 as shown 

in later tables. Figure 2 illustrates the boundary conditions, moving boundary, and fixed bound- 
ary value u (0, t) of an exact solution 

u(x,t) = 1  - -  exp(½x+~t), O~<t<41n2, (7) 

s = - -2In  [ 2 - e x p ( J ~ t ) ] ,  t = 4 1 n [ 2 - e x p ( - ½ s ) ] ,  (8)  

; = exp (½s)--0.5,  (9) 

for 

f ( t )  = ½ exp (~t), p(s) = 211--exp (½s)], s(0) = 0. (io) 

As t + 41n2 = 2.77, s + ** and ; + *% and at the calculation limit s = 10, t = 2.76, ; = 147.9, 
with ~ (0) = 0.5, so that a wide variation of boundary velocity is encompassed. Both examples 
have s(0) = O, but initial conditions (4) for s(0) > 0 simply change the starting procedure for 

the finite difference scheme. 
Now assume that there is a finite time over which the moving boundary does not change 

direction, so s(t) is monotonic. Then s can replace t as an independent variable. In the above 

examples s (t) > 0 for all boundary positions, so defining 

u(x, t )  = u(x,s),  ; ( t )  = 7(s)~>0, (11) 

the diffusion equation (1) becomes 

a?, a2~  
0 < x < s .  (12) 

a s  - ax  2 ' 

More generally, ; may change sign at s =Sm and remain negative for another finite time range, 
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or be negative for some initial time range. Then equations (11)and (12)can be obtained in an 

increasing variable ~ = -- s with 3' replaced by ~ = s (t)/> O, allowing forward integration in ~. 
It is expected that s(t) is monotonic for all, or long, times for a variety of boundary conditions. 

I.j4 

I.i 

1,3 

1,2 

1,1 

I = $  

, i/*l'i*l 

2.a 3 . ~ a  O~ = - ~'Cs) 

¢ 
Figure 3. The fixed domain. 

Figure 3 illustrates the fixed (x, s) domain and transformed boundary conditions (2) and (3), 
where the time t at each s is calculated by 

t = 3o 7(s') " (13) 

While the domain is now fixed, the boundary velocity 7(s) is a new unknown dependent vari- 

able to be determined simultaneously with ~ (x, s), and the differential equation (12) is non- 
linear. 

3. Finite difference scheme 

Equal x and s grid steps are the most convenient for the domain 0 < x < s with grid points 
( / , / )  lying on the boundary x = s (Figure 3). Let the step length be h and introduce the 
notation 

x i  = ( i - - 1 ) h .  

ui ,  j = ~ ( x . s j ) ,  

sj = ( j - - 1 ) h ,  

"V/ = ~,(sj).  

(i,j = 1 , 2 , . . . )  (14) 
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Following Ames [13], an implicit finite difference approximation for the equation (12), with 
arbitrary weighting between the / + 1 and / levels of s (0 ~< r ~< 1, 0 ~< k ~ 1), is 

rul_ 1, j+ 1 - ( 2 r +  I~)u~, j+l  + ru :+ l ,  j+ 1 

where 

= - - (1  - - r )u i_ l ,  j + [2(1 - - r ) - -  r j  ] ui, j - ( 1  - r ) u i + l ,  j, 

(i = 2,3 . . . .  / ; /  = 3 , 4 , . . . ) ,  

I~j = kh'~j÷ 1 -l- (i -- k)h'~j. 

(15) 

(16) 

An explicit scheme for the values at sj. 1 (r = 0, k = 0) is not generally satisfactory. 
The boundary condition (3)1 determines uj + 1, j + i = p(sj+ l) directly, and boundary 

condition (2) 1 has the difference approximation 

U l , j + I  - - U 2 , j ÷ I  ~--- hf(tj+l). (17) 

Thus, if all values at s 1 are known, including ul÷ld outside the domain, and 71+1 and tl÷ 1 are 
known, then (16), (15) are a conventional tridiagonal linear system of /equat ions  for the /  
unknowns ui, j÷ 1 ( i= 1,2 . . . .  l~,which can be solved by a simple algorithm. The exterior value 
ul+ld can be estimated by Taylor series extrapolation of the interior solution to O(h 2) as- 
suming that 

p'(s) = b(s) (18) 

is order unity. From the boundary conditions (3) and differential equation (12), 

aft a2fi 
f~ . . . . . .  P' ~x 7,  ax 2 7 2 + 7b, on x = s, (19 )  

and, hence, 

uj÷ 1, j = pj-h l + ½h 2 + (20) 

Similarly, an inner expansion at level sj÷ 1 gives a quadratic equation for 7~÷ 1 with positive 
root 

hTj+l = { ( l+½hbj+l )  2+2(uj,j+,-pi+l)I1/2-(l+½hbj+l), (21) 

which is used to update 7~+ 1 once u j. ~+ l is determined from the above linear system. An 
iteration is started with Fj = hTj. The time t a t  each s, and in particular tj+ l, required in the 
boundary condition (17), is calculated by 

h ( 1  4 1 t tl = 0, t2 = + + , (22) 
7s/z 
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h ( 1 + 4 +  1 ) ( / = 2 , 3  . . . .  ), (22) 
t ~ + s - t ~ - i  = ~  71+t 7j 7 j - 1  ' 

where the updated 71 + t is used at each step of the iteration. The iteration is halted when the 
Nth value 7~++)1 satisfies 

,v ( N )  __  ,v ( N  - -  1 )  _ ( N  - -  1 )  
,]+l : l + 1 [ ~ h 2  , j + l  ]. (23) 

For boundary conditions (3) 1, (6) 1, the expressions (20), (21) are replaced by 

uj+ I, j = pj + hqj + ½h 2 3'i (bj --q j), 

½h 2(b./+1-qj+l)%~+l = uj,]+1 -Py+l +hq]+t, 

(24) 

when bj+l - q j + l  = (afi/as)x = , j+l  
p'(O = b(t), the expressions are 

0. For time dependent conditions if(t), ~(t) ,  with 

u~+ 1, ~ = Fj + hqj + ½h 2 (~  -- 7Aj), 

½h~gJ.l 7j.1 = ½h~Gt÷~ - ~ - j . ,  + F j . ~ - u j ,  l÷ , ,  
(25) 

when "ql+s = (auDx)x.,R.r,l 4= O. Here Pl+t, qj,,s, b1+1 are values at tl+l to be updated 
at each iteration. 

It remains to obtain expressions for ua.2, and for ua, a, u2.s, 72, 7a, required to start the 
s-marching with / = 3 in (15), (16), (17), (21), and for "/1 to determine t2, ta. For smooth 
boundary conditions (2), (3), Taylor series expansions in (x, s) about (0, 0) to 0(h 3) for fi and 
to O(h 2) for 7 provide O(h 3) accuracy in the starting values for (15), and h ,  ts, which is better 
than the t'mite difference approximation. Values of the required derivatives at (0, 0) are ob- 
tained from continued differentiation of boundary conditions and differential equations. For 
the Gupta and Kumar [8] problem (5), 

71 = 1, 7a/2 = 1-- ½h+½h 2, 72 = 1 - - h + 2 h  2, 73 = 1 - - 2 h + 8 h  ~, 

t2 = h + ½ h 2 - - ~ h  3, ts = 2 h + 2 h  2 - ] h  3, (26) 

u i , 2  = h- -½h 2 +ha ,  u1,3 = 2h- -2h  2 + 8 h  3, u2,a = h - - ] h  2 +6h 3. 

For the boundary conditions (10), 

71 = ½, 73/2 = ½+~h+~t ' i h  2, 72 = ½ + ½ h + ~ h  2, 7s = ½ + h + ½ h  2, 

tz = 2 h - - h  2 +½h 3, ts = 4h- -4h  2 + 4 h  3, (27) 
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u, ,2  = - ½ h + ~ h  2 - & h  3, u , ,3  = - - h  +½h 2-16h3 , 

u2,3 = - ] h - l h  2 -t h 3 

When s(0) = So > 0, the initial condition (4), boundary condition (3) and differential 

equation (12), give 

ui, 1 = g(xi) and 3' ] + bl 3'1 - -g"  (So) = 0 (28) 

to determine 3'1, where 3'j = 3'(sj -- So) etc. Dividing the initial line s = So, 0 < x  < So into 
m C ~ 2) intervals of length h allows the marching scheme (15)-(17) to start f r o m / =  1 with i = 

2, 3 . . . . .  m + / .  An expansion for 3' near So can be constructed, or the first time interval t2 de- 

fined by 

1) 
t2 = ~- + (29) 

with 3'2 = 3'1 to start the iteration. 
The essential feature of this method is that the boundary location in the (x, s) domain is 

known exactly, and the iteration is required to determine the boundary velocity and not 

boundary position through variable space or time steps. It is to be expected that similar ac- 

curacies in these different iteration schemes will result in better boundary position accuracy 
obtained by integration of a boundary velocity. The present iteration scheme is also very 

simple, and the example (7)-(10)  with significant boundary acceleration shows that the first 
estimate of 3' is adequate after an initial time interval. The present iteration arises through the 

non-linearity in fi and 3' which occurs for both linear and non-linear initial equations, so no 

further complexity is expected for an initial non-linear problem. 

4. Numerical solutions 

First consider the problem with boundary conditions (10) and exact solution (7) ' (9 ) .  Figure 

2 shows the exact boundary position over a range 0 ~< s -<< 5, and Fixed boundary value -- u 
4 (0, t) for 0 ~< t ~< 2.77. Let T denote the computed value of t and 3' the computed value of ~ at 

i given position s, using r = k = 0.5, then Table 1 shows the comparison of exact and computed 

: solutions, absolute errors and relative errors for 0 ~< s ~< 10. The values shown for 0 ~< s ~< 2 

were  computed with h = 0.005, those shown for 2 ~ s ~< 5 with h = 0.01 for the complete 
.range 0 -<< s ~< 5 and those shown for 5 ~< s ~< 10 with h = 0.02 for the complete range 0 <~ s <<. 
10. Thus, the pairs of values at s = 2 and s = 5 indicate the differences obtained with the dif- 

ferent step lengths. The errors in boundary velocity are remarkably small, even with a coarse 

interval h = 0.02 over a range 0 ~< s ~ 10 in which ~ increases from 0.5 to 147.9. The corre- 
sponding time errors, and hence boundary position at given time, are larger, but the relative error 

is still very small at s = 10. 
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Table 1. Exact solution comparison, boundary motion 

T - - t  ~/ - - k  
s t T T - - t  k "r " r - - s  

t 

(h = 0.005) 
0 0 0 0 0.5 0.5 0 
0.2 0.3636 0.3640 0.0004 0.0011 0.6052 0.6046 -0.0006 -0.0010 
0.4 0.6664 0.6670 0.0007 0.0010 0.7214 0.7208 -0.0006 -0.0008 
0.6 0.9218 0.9227 0.0008 0.0009 0.8499 0.8493 -0.0005 -0.0006 
0.8 1.1398 1.1407 0.0010 0.0008 0.9918 0.9914 -0.0005 -0.0005 
1.0 1.3272 1.3282 0.0010 0.0008 1.1487 1.1483 --0.0004 -- 0.0003 
1.2 1.4895 1.4906 0.0011 0.0007 1.3221 1.3218 --0.0003 --0.0003 
1.4 1.6310 1 . 6 3 2 1  0.0011 0.0007 1.5138 1.5135 --0.0003 --0.0002 
1.6 1.7548 1.7559 0.0011 0.0006 1.7255 1.7253 --0.0002 --0.0001 
1.8 1.8636 1 . 8 6 4 7  0.0012 0.0006 1.9596 1.9594 --0.0002 --0.0001 

2.0 1.9595 1.9607 0.0011 0.0006 2.2183 2.2182 --0.0001 --0.0001 
(h = 0.01) 

2.0 1.9595 1.9618 0.0023 0.0012 2.2183 2.2180 --0.0003 --0.0001 
2.3 2.0832 2.0855 0.0023 0.0011 2.6582 2.6580 --0.0002 --0.0001 
2.6 2.1866 2.1889 0.0023 0.0010 3.1693 3.1692 --0.0001 --0.0000 
2.9 2.2736 2.2759 0.0023 0.0010 3.7631 3.7631 --0.0000 --0.0000 
3.2 2.3469 2.3492 0.0023 0.0010 4.4530 4.4530 --0.0000 --0.0000 
3.5 2.4090 2.4113 0.0023 0.0010 5.2546 5.2546 0.0000 0.0000 
3.8 2.4617 2.4640 0.0023 0.0009 6.1859 6.1859 0.0000 0.0000 
4.1 2.5065 2.5088 0.0023 0.O009 7.2679 7.2679 0.0000 0.0000 
4.4 2.5446 2.5469 0.0023 0.0009 8.5250 8.5250 0.0000 0.0000 
4.7 2.5772 2.5794 0.0023 0.0009 9.9856 9.9856 0.0000 0.0000 
5.0 2.6050 2.6072 0.0023 0.0009 1 1 . 6 8 2 5  11.6825 0.0000 0.0000 

(h = 0.02) 
5.0 2.6050 2.6094 0.0044 0.0017 11.6825 11.6827 0.0002 0.0000 
6.0 2.6718 2.6762 0.0044 0.0017 19.5855 19.5858 0.0003 0.0000 
7.0 2.7117 2.7161 0.0044 0.0016 32.6154 32.6159 0.0005 0.0000 
8.0 2.7358 2.7402 0.0044 0.0016 54.0982 54.0989 0.0007 0.0000 
9.0 2.7503 2.7547 0.0044 0.0016 89.5171 89.5181 0.0010 0.0000 

10.0 2.7591 2.7635 0.0044 0.0016 147.913 147.914 0.0012 0.0000 

Denote the exact boundary value u(0,  t) by u t, the exact boundary value u(0,  T) by u r and 

the computed boundary value t~ (0, s) by U. Table 2 compares U with u t and with u T, both 

comparisons showing small relative errors over the entire range, with [ ( U - -  u T ) / u  r I the least. 

That is, U is better interpreted as the value at the calculated time rather than at the exact time 

when the moving boundary is at s, which is the more useful comparison. No iterations were re- 

quired with h = 0.005, and only one iteration for the first 17 steps with h = 0.01. Also no 

iterations were required with h = 0.02, but recall that the halt criterion adopted used a change 

proportional to h 2 , to be consistent with the finite difference approximation, so increasing h 

decreases the demanded accuracy. 

Comparison computations were made with the weightings r = k = 1, giving T differences of 

magnitude 10 -4 , 7 differences of magnitude 2 x 10 -4 , and U differences of magnitude 10 -4 ,  

with h = 0.01, all much smaller than the errors. 

The Gupta and Kumar [8] problem (5) was computed with r = k = 0.5, and both h = 0.01, 

their smallest step length, for 0 ~< s ~< 5, and h = 0.02 for 0 ~< s ~< 10. Table 3 shows the 
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Table 2. Exact solution comparison, fixed boundm'y values 

s - - u  t - - U  U + u t  U - - u t  U - - u T  - -  - - u  T - -  U + u T 
u t  UT 

(h = 0.005) 
0 0 0 0 0 0 
0.2 0.0952 0.0953 0.0001 0.0013 0.0953 0 . 0 0 0 0  0.0002 
0.4 0.1813 0.1815 0.0002 0.0013 0.1815 0.0000 0.0003 
0.6 0.2592 0.2595 0.0004 0.0014 0.2594 0.0001 0.0003 
0.8 0.3297 0.3301 0.0005 0.0014 0.3300 0.0001 0.0004 
1.0 0.3935 0.3940 0.0005 0.0014 0 . 3 9 3 8  0 . 0 0 0 2  0.0004 
1.2 0.4512 0A518 0.0006 0.0014 0.4516 0.0002 0.0005 
1.4 0.5034 0.5041 0.0007 0.0014 0 . 5 0 3 8  0.0003 0.0005 
1.6 0.5507 0.5514 0.0007 0.0013 0.5511 0.0003 0.0005 
1.8 0.5934 0.5942 0.0008 0.0013 0.5939 0.0003 0.0006 
2.0 0.6321 0.6330 0.0008 0.0013 0.6326 0 . 0 0 0 4  0.0006 

(h = 0.01) 
2.0 0.6321 0.6338 0.0017 0.0027 0 . 6 3 3 0  0 . 0 0 0 8  0.0012 
2.3 0.6834 0.6852 0.0018 0.0027 0 . 6 8 4 3  0.0009 0.0013 
2.6 0.7275 0.7294 0.0019 0.0026 0.7285 0.0009 0.0013 
2.9 0.7654 0.7674 0.0020 0.0026 0.7664 0.0010 0.0013 
3.2 0.7981 0.8002 0.0021 0.0026 0.7991 0.0011 0.0013 
3.5 0.8262 0.8284 0.0022 0.0026 0.8273 0.0011 0.0013 
3.8 0.8504 0.8526 0.0022 0.0026 0.8515 0.0011 0.0013 
4.1 0.8713 0.8735 0.0023 0.0026 0.8723 0.0012 0.0014 
4.4 0.8892 0.8915 0.0023 0.0026 0.8903 0 . 0 0 1 2  0.0014 
4.7 0.9046 0.9070 0.0023 0.0026 0.9057 0.0012 0.0014 
5.0 0.9179 0.9203 0.0024 0.0026 0 . 9 1 9 0  0.0013 0.0014 

(h = 0.02) 
5.0 0.9179 0.9227 0.0048 0.0052 0.9200 0.0027 0.0029 
6.0 0.9502 0.9552 0.0050 0 . 0 0 5 2  0 . 9 5 4 2  0 . 0 0 2 8  0.0030 
7.0 0.9698 0.9749 0.0051 0.0052 0 . 9 7 2 0  0 . 0 0 2 9  0.0030 
8.0 0.9817 0.9868 0.0051 0.0052 0 . 9 8 3 9  0 . 0 0 2 9  0.0029 
9.0 0.9889 0.9940 0.0051 0.0052 0.9911 0.0029 0.0030 

10.0 0.9926 0.9977 0.0052 0 . 0 0 5 2  0 . 9 9 4 8  0 . 0 0 3 0  0.0030 

computed 3', time TM, and boundary value fi(0, s) = UM, with the Gupta-Kumar values To, 

Ua, and integral method approximation values Tz, Ux for comparison. The present method 

shows no indication of instability at the maximum range, s = 10, taken, but Gupta and Kumar 

stopped their computation at s = 3, so no subsequent comparison is possible. It is clear that the 

Gupta-Kumar solution is much closer to the present solution than to the approximate integral 

method solution they presented to confirm the accuracy of their computation, suggestingbetter 

accuracy than claimed. They set a relative error of 0.005 to halt the iteration but give no in- 

formation about the number of iterations requried or computing time in general. 
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Table 3. Comparison with Gupta-Kumar solution 

s ~/ T M T G T I U M U G U I 

(h = 0.01) 
0 1.0 0 0 0 0 
0.2 0.8555 0.2173 0.2172 0.2181 0.1859 
0.4 0.7625 0.4657 0.4656 0.4675 0.3527 
0.6 0.6956 0.7408 0.7406 0.7444 0.5082 
0.8 0.6440 1.0400 1.0395 1.0568 0.6558 
1.0 0.6023 1.3614 1.3604 1.3727 0.7975 
1.2 0.5677 1.7037 1.7015 1.7217 0.9344 
1.4 0.5381 2.0657 2.0621 2.0928 1.0673 
1.6 0.5126 2.4467 2.4413 2.4854 1.1970 
1.8 0.4901 2.8459 2.8382 2.8991 1.3239 
2.0 0.4702 3.2626 3.2522 3.3333 1.4482 
2.2 0.4524 3.6964 3.6829 3.7878 1.5704 
2.4 0.4363 4.1467 4.1295 4.2623 1.6905 
2.6 0.4216 4.6131 4.5916 4.7564 1.8089 
2.8 0.4082 5.0953 5.0684 5.2700 1.9257 
3.0 0.3959 5.5930 5.5599 5.8028 2.0410 
3.2 0.3845 6.1057 2.1550 
3.4 0.3739 6.6332 2.2676 
3.6 0.3641 7.1753 2.3792 
3.8 0.3549 7.7317 2.4896 
4.0 0.3463 8.3022 2.5990 
5.0 0.3103 11.3592 3.1327 

(h = 0.02) 
5.0 0.3104 11.3484 3.1351 
6.0 0.2826 14.7298 3.6507 
7.0 0.2604 18.4205 4.1517 
8.0 0.2421 22.4073 4.6407 
9.0 0.2267 26.6796 5.1198 

10.0 0.2135 31.2281 5.5901 

0 0 
0.1858 0.1854 
0.3526 0.3531 
0.5082 0.5110 
0.6560 0.6623 
0.7981 0.8090 
0.9353 0.9521 
1.0689 1.0923 
1.1994 1.2301 
1.3272 1.3659 
1.4524 1.5000 
1.5758 1.6326 
1.6976 1.7639 
1.8183 1.8941 
1.9378 2.0232 
2.0552 2.1514 
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